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INTRODUCTION 

A mapping F: C" - C , F(X) = (FX(X\... ,Fn(X))9 is a polynomial map­
ping if each Ft is a polynomial. How do we recognize when such an F is 
invertible? The question is unambiguous since, once F is bijective, its set 
theoretic inverse is automatically polynomial (see Theorem 2.1). When F is 
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linear, nonvanishing of det(F) detects invertibility. Linearizing the general 
case leads us to consider the Jacobian J(F) = (d^/dXj). Invertibility of F 
implies that of / ( F ) , i.e. that det J(F) G Cx. Conversely we have the Jacobian 
Conjecture: 

det J(F) G Cx => Fis invertible. 

The analogue in characteristic/? > 0 is false, already f or n = 1, F( X) = X + 
Xp. The analytic analogue is likewise false, for example with n = 2, Fx — ex, 
F2 = e~xY. There is even an entire F: C2 -* C2 with det J(F) = 1 such that F 
is injective, yet F(C2) misses a nonempty open set (see (1.1), Remark 10). In 
contrast, if F: Cn -> Cn is polynomial, det 7(F) = 1, and F is injective, then F 
is invertible (see Theorem 2.1). Thus the Jacobian Conjecture must depend on 
properties specific to polynomials in characteristic zero. 

The Jacobian Conjecture seems first to have been formulated by O. H. 
Keller in 1939. Aside from the trivial case n = 1 it remains an open problem 
for all n>2.ln the late fifties and early sixties several faulty proofs appeared 
in print. A discussion of these is presented in §3 of Chapter I. 

Chapter I aims to give a fairly complete representation of the state of the art 
on the Jacobian Conjecture, to serve as a historical account and as a reference 
for future research on the problem. §2 surveys a number of the partial results. 
Notable among these is Moh's proof of the Jacobian Conjecture f or n = 2 
when deg(F) < 100 [Mo], and S. Wang's proof of it for all n when deg(F) < 2 
[Wa]. Here deg(F) denotes the maximum degree of the polynomials F}9...,Fn. 

Chapters II and III present a new approach to the Jacobian Conjecture, 
whose effect is to reduce it to a sort of combinatorial problem, hopefully 
susceptible to testing by computer. 

In Chapter II it is shown that the Jacobian Conjecture will follow once it is 
shown for all F = (F,,...,FW) of the form Ft = Xt — Ht where each Ht is a 
cubic homogeneous polynomial, and the matrix J(H) — (dHj/dXj) is nilpo-
tent. (This contrasts temptingly with Wang's proof of the conjecture for 
quadratic F.) 

An F = X — H as above has an analytic inverse G = (Gx,...9Gn) near the 
origin: For each i, Gt{X) is a power series such that Gt(F) — Xt. The Jacobian 
Conjecture asserts that these power series Gt are polynomials. We present in 
Chapter III a formula of Abhyankar and Joni for the Gt. From this we derive a 
combinatorial expansion (indexed by rooted trees with d vertices) for the 
homogeneous components G\d) of Gt. The hope is to show that Gjd) = 0 for 
sufficiently large d. We initiate a (still inconclusive) method for showing this 
by induction on e, where J(H)e = 0. 

The three chapters may be read essentially independently of one another. 
This paper is a substantial revision of an earlier draft circulated in August, 

1980. It owes much to numerous colleagues, who are acknowledged at the end 
of Chapter I. 

I. THE JACOBIAN CONJECTURE 

1. Statement of the Jacobian Problem; first observations. Let A: be a com­
mutative ring and n > 0 an integer. Write k[n] for the polynomial algebra 
k[Xl9...,X„] in n variables and An

k = Spec(/c[w]), affine «-space over k. A 
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morphism, or polynomial map, F: An
k -* A^ can be identified with its sequence 

F= (Fx,...9Fn) of coordinate functions Ft E k[n]. The induced A>algebra 
endomorphism of k[n] is <pF: ƒ H>/(F), sending Xt to Ft. The map F h* <pF is an 
anti-isomorphism of monoids (<pF ° <pc = <pc 0 F) , 

End(A"J -> End(A:[n]) 

from /c-scheme endomorphisms to A>algebra endomorphisms. Each F as above 
defines a polynomial map F: kn -+ kn which determines F whenever fc is, say, 
an infinite integral domain. 

The automorphism group 

GA„{k) = Aut(A-t) 

is here called the affine Cremona group; it is anti-isomorphic to Autk_alg(k
[n]). 

The group GAn is the nonlinear analogue of GLn. 
Given F G End(A^) how can we recognize whether or not F G GAn(k)l A 

necessary condition is furnished by the Jacobian matrix 

>DXFX ••• D„F^ 

J(F) = (7(F), . , = Z>,3), 

where Dj = 8 / 3 ^ . The Chain Rule gives 

(1) / ( G ( F ) ) = 7 ( G ) ( F ) - / ( F ) . 

When F is invertible, with inverse G, we have G(F) = X— (Xl9...,Xn) so 
I = J(X)= J(G)(F) • / (F) , and we see that / ( F ) is invertible. Thus 

(2) FEGAn(k) ^J(F) G GL„(*W). 

In this case det / ( F ) is a unit of A:1"1. When k is reduced (without nonzero 
nilpotent elements) the units of k[n] are just the (constant) units kx of k. 

The Jacobian Problem asks about the converse of (2), i.e. about the validity 
of the following "Jacobian Property": 

JPn( k ) : if F G End(AM* ) and / ( F ) is invertible then F is invertible. 

We begin with some elementary observations and then give a historical 
account of the problem. 

(1.1) REMARKS. Let F G End(A^). 
1. To show that F is invertible we are always at liberty to replace F by 

G o Fo H where G9 H G GAn(k). In particular we can replace F by To F 
where T is the translation T - X - F(0), and so arrange that F(0) = 0. If the 
linear term F(1) of F is an invertible linear map (it corresponds to the matrix 
/(F)(0)) we can further replace F by F^1 ° F to arrange that F(1) = X, so that 
Ft = Xt + terms of degree > 2 (i = 1,... ,n). 

2. Suppose that F(0) = 0 and that /(FXO) is invertible. Then (Implicit 
Function Theorem) F is formally invertible at the origin. In other words there 
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is a formal inverse G = (G,,...,GW) defined by the conditions, 

Gi(F) = Xi ( * = 1 , . . . , « ) . 

(We give a formula for G, in Chapter III, Corollary (2.2).) In order that 
F E GAn(k) it is necessary and sufficient that the power series Gt be polynomials. 

In any case the map <pF> f*-*f(F) defines an automorphism of k[[n]\ and 
hence an injective endomorphism of k[n\ i.e. Fl9...9Fn are "algebraically 
independent" over k. Invertibility of F is equivalent to the condition 
k[Fl9...9Fn] = k[Xl9...9Xn]. 

3. Suppose that /(F)(0) is invertible. Let k C K be an extension of scalars. 
Then 

FŒGAn(k)~FŒGAn(K). 

In fact we may assume that F(0) = 0 so that F has a formal inverse G = 
(Gl9...9Gn). Then G, E k[[n]] is a polynomial over k iff it is one over K. 

4. ("Lefschetz Principle"). JPn(C) =*JPn(k) for every integral domain k of 
characteristic 0. In fact let F E End(Aw

A:) with / ( F ) invertible. Using Remark 1 
we may assume that F(0) = 0 and /(F)(0) = I. In this case det / ( F ) = 1. Let 
k0 be the subring of k generated by all coefficients of Fl9... 9Fn. Then k0 can 
be embedded in C. By assumption JPn(C) we have F E GAn(C)9 so by Remark 
3 we have F E GAn(k0) C GAn(k). 

5. If A: is a field of characteristic/? > 0 then JPn(k) fails for all n > 1. Just 
take FX = XX+ Xf and Ft = Xt for i > 2. Then J(F) = I whereas F can't be 
invertible since F, is not even an irreducible polynomial. _ 

6. Suppose that N is a nilpotent ideal of k9 and put k = k/N. Let F = k<8>kF 
be the corresponding endomorphism of An

k-. Then 

F £ G ^ ) ^ F 6 G i „ ( i ï ) . 

For the nonobvious implication, suppose that F E GAn{k). Let C denote the 
/c-module fc[w]/<pF(A:I'l]). Since <pf= k®k<pF is an isomorphism we have 
C/NC = 0, so C = iVC = W2C = • • •. Since JV is nilpotent, C = 0. Since k[n] 

is /c-free, Ker(<pF) is a A>linear direct summand of k[n]. Therefore, again since 
<p îs an isomorphism, £®kKer(<pF) = 0, and again as above, Ker(<pF) = 0. 

7. Suppose that k is noetherian. Assume that /(F)(0) is invertible. If for 
every homomorphism k -* K9 where A' is a field, K®kF E GAn(K)9 then 
FGGA„(k). 

We may assume that F(0) = 0. Let G be the formal inverse of F (Remark 2). 
Let F be a prime ideal of k9 and K the field of fractions of k/P. By hypothesis, 
K <£>£ F is invertible, so that G is a polynomial map mod P. Therefore G is a 
polynomial map modulo the intersection AT of the (finitely many) minimal 
primes of k. Since N is nilpotent the invertibility of F follows from Remark 6. 

8. JPn(C) =* JPn(k) f° r e v e ry commutative ring A: which is Z-torsion free, or, 
more generally, in which the Z-torsion elements are nilpotent. 

Indeed, let F E End(Aw
A;) with / ( F ) invertible. By Remark 1 we may assume 

that F(0) = 0 and /(F)(0) = I. Thanks to Remark 3 we may replace k by the 
subring generated by all coefficients of F and of det J(F)~l and so assume 
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that k is noetherian. Then its nilradical is nilpotent, so, by Remark 6, we may 
replace k by k/N, where N is the (nilpotent) ideal of Z-torsion elements, and 
so assume that k embeds in K = Q ® z k. By Remark 3 again, we may replace 
k by K. Then the assertion follows from Remarks 4 and 7. 

9. One can generalize the Jacobian Problem to morphisms F = (F^. . . ,Fm) 
from An

k to A™ (each Ft being in k[n])9 by asking when F admits a left inverse 
G. From the formula /„ = J(G(F)) = J(G)(F) • / ( F ) we see that a necessary 
condition is that / ( F ) be left invertible. That this condition is not sufficient is 
shown by the following example, over any k. Take F: A\ -> A\ defined by 
FX(T) = T2-T and F2(T) = T3 - T2. Then F(0) = F(l) = (0,0), so F is not 
an embedding, whereas 

J{F)=\3T2-2T) 

has the left inverse ((6T — 1), -4), so that Fis an immersion. 
10. The analytic analogue of the Jacobian Property fails completely, already 

for n — 2. Taking F, = ex and F2 = Ye~x we have det / ( F ) = 1 everywhere. 
The fiber of F through (x, y) is (x + Z2iri9 y% and the image of F: C2 -» C2 

excludes exactly the axis X — 0. Even worse, there is an example F = (Fl9 F2): 
C2 -> C2 of Fatou and Bieberbach (cf. [B + M, Chapter III, §1]) such that F, 
and F2 are entire, det / ( F ) = 1 everywhere, Fis injective, and yet C2 — F(C2) 
contains a nonempty open set. 

The degree of F E End(A^) is defined to be 

deg(F) = maxdeg(iv) 

where the latter refers to degrees as polynomials in Xu..., Xn. 

(1.2) PROPOSITION. Let k0 be a subring ofQ, and let n, d be integers > 1. Let 
C denote the class of all pairs (k9 F) where k is a commutative k0-algebra9 

F G End(A^), deg(F) < d, and det / ( F ) G kx . Assume that whenever (£, F) 
G C and k is afield then F is invertible. Then there is a constant S — S(k0, n9 d) 
such that, for all (k9 F) G C, F is invertible and the inverse of F has degree < 8. 

Note that k0 is obtained from Z by inverting some collection of primes. 
Let %Jl denote the set of monomials of degree <d in Xl9...,Xn. Let A 

denote the A:0-algebra_of polynomials in indeterminates ciM {i— 1,...,«; 
MŒW). Put F=(Fl9...,Fn) where Ft\ = 2M(=m cuMM G'A[H]. Let D = 
det / ( F ) G A[n\ and let / denote the ideal of A generated by all coefficients of 
D - 1 as a polynomial in X]9...,Xn. Put B = 4 / / and F = B ®A F. Thus 
(B, F) is the generic element of C subject to the condition det / ( F ) = 1. Since 
B is noetherian it follows from Remark 7 above and our hypothesis that F is 
invertible. Let G denote its inverse, and put S = deg(G). Let (k, F) G C. If 
u = det / ( F ) G A:x then we can replace F, by w_1F, without changing the 
degree of F, or of its eventual inverse, and so arrange that det / ( F ) = 1. Then 
the generic property of (B, F) implies that F = k ®5 F for a unique homomor-
phism 5 -* A:. It follows that F is invertible with inverse G = k ®B G of degree 
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(1.3) REMARKS. 1. Let A: be a field of characteristic ¥> 2 and let F E End(A^) 
be a quadratic map (deg(F) < 2) with J(F) invertible. Then S. Wang [Wa] (see 
(2.4) below) has shown that F is invertible, and he conjectured that its inverse 
G has degree < 2W_1. It follows from Wang's theorem that the hypothesis of 
Proposition (1.2) is satisfied for k0 = Z[l/2], all n9 and d — 2. Thus (1.2) gives 
a universal bound 8 for deg(G). We shall see below (Corollary (1.4)) that in 
fact Wang's Conjecture is true. 

2. When k is not reduced the condition det J(F) E kx in (1.2) is stronger 
than invertibility of J(F), and the analogous proposition is false if we use the 
weaker condition. For example suppose a G k satisfies ad ¥= 0, ad+x = 0. Take 
n= I and F = X - aX2. Then J(F) = 1 - 2aX E k[X]x . If G(F) = *then 
J(G)(F) • J(F) = 1, so J(G)(X-aX2) = (1 - 2aX)~l = ld

=0(2aXy has 
degree < 2 • deg J(G). Thus deg(G) > (d/2) + 1 whereas deg(F) = 2. 

3. Let A: be a field and let F E End(A^) be of degree d> 1. Write 
Ft — 2?=o /̂(r)> where each Fi(r) is homogeneous of degree r, and put ƒ = 
2?=0Xo~rFi(ry This is a homogeneous form of degree d in k[X0, Xv...,Xn\. 
Putting f0 = XQ, the sequence ƒ = ( /0, f x , . . . ,ƒ„) defines a rational map 

which extends F on An
k (identified with the locus X0 ^ 0). If deg(Ft) = d then 

X0 doesn't divide/, so g.c.d.(/0, ft)= 1. If Fis invertible then ƒ is birational. It 
follows therefore from Theorem (1.5) below that if F is invertible with inverse 
G then deg(G) < deg(F)w_1. We state this corollary now, before formulating 
the theorem. 

(1.4) COROLLARY. Ifk is a field and F E GAn(k) then deg(F_1) < deg(F)""1. 

The following result was communicated to us by Ofer Gabber, to whom we 
are grateful for permission to reproduce it here. He attributed it to an 
unrecalled colloquium lecturer at Harvard.4 

Let A: be a field and let/: PW--*PW be a rational map (where Pw = P£); it is 
given by a sequence (/0, fl9. ..,ƒ„) of homogeneous forms of the same degree 
d9 unique up to a factor from k[X09... 9Xn]. We can assume that 
g.c.d.(f09...,ƒ„)= 1, and then we define deg(ƒ) = d= deg(ƒ) for all i. The 
domain of definition of ƒ is 

dom(/) = P » - F ( / 0 , . . . , / „ ) . 

(1.5) THEOREM. Letf: P"—->P" be a birational map with inverse f K Then 

d e g ( r , ) < d e g ( / r 1 . 

We sketch here the proof indicated by O. Gabber. Let Zf denote the union 
of the irreducible components of dimension > 0 of all of the fibers of 

4 Since writing this paper John Tyrrell (Kings College, Univ. of London) has indicated that this 
result was "well known" to the classical geometers. Tyrrell also knew, but never published, the 
"reduction to degree 3" of Proposition (3.1) in Chapter II below. 
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ƒ: dom(/) - P"; this is closed in dom(/). Let Uf= dom(/) - Zf. Then ƒ 
induces an isomorphism 

f:Uf~Ur 

with f~x =rX- Choose a hyperplane 

containing no irreducible component oîf(Zf) and so that, 

/ \ D =J^](HU) — V(2t UjF;) contains no irreducible compo­
nents of Zf. 

Then H° = HUH Ur\ is irreducible and we have an isomorphism/: D D Uf-+ 
H». It follows that 

and that 2, uiFi is an irreducible polynomial. 
Let H2,...,Hn be a general system of hyperplanes such that D C\ H2 

n • • • n/fw is finite and contained in Uf\ these exist because of (*). Then 

dcg(/) = dcg(D) = dcg(D-fr2-.-frj 

= deg (rW)- (^2k) - - - (^ l i / , ) ) 

= deg( f f B
0 - / (* 2 | l / / ) - - - / (» l i | i , / ) ) . 

If # , = V(ljatJXj) and T ' is given by (g0 , . . . ,gn) then f(H, C\Uf) = Dtn 
Ur: where Z), = V{ljaijgj). The 0-cycle # ° • f(H2 \Uf) • • -f(Hn \Uf) can be 
written as Z1^ where Z = (Hu D2 • - Dn)p, and the subscript p designates 
"proper intersection," defined as follows. 

If A and B are cycles of Pn of codimensions a and b respectively then 
(A - B)p denotes the sum of the codimension a + b components of | A \ C\\B\ 
with coefficients given by intersection theory; one disregards components of 
codimension < a + b. This product is associative on effective cycles. Let A 
and B be effective. If they intersect properly then {A - B)p = (A - B) and 
deg(v4 • B) = deg(^4) • deg(2?). If they intersect nonproperly then deg(̂ 4 • B)p 

< deg(^) • deg(£). 
Now returning to the argument above we have 

deg( ƒ ) = deg(Z|£//) < deg(Z) < deg(tfJ • deg(Z>2) • • • deg(£>„). 

Since deg(//M) = 1 and deg(D/) = degC/"1) (/ = 2,...,w) we conclude that 
deg( ƒ ) < deg( j ^ x ) n ~ x . Replacing ƒ by fx we obtain the theorem. 

Let A: be a field. Put E = End(A^), / = {F G E | det J(F) = 1}, and G = / 
n GAn(k). The Jacobian Property is equivalent to the condition J — G. For 
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each d>\let E(d) = {F G E| deg(F) < d}, J(d) =J f) E(d)9 and G(d) = G O 
E(dy Then E^d) = {k\n

d\)
n, where the space k[d] of polynomials of degree < d 

has dimension (nfd). Clearly J(d) is a closed subvariety of E(d). What is less 
obvious is that: 

(1.6) COROLLARY. G^d) is a closed subvariety of E^dy 

Each F G J(d) can be uniquely factored as r ° F where T is a translation 
and F'(0) = 0. Let /f be the formal inverse of F\ and write H = 2 r > 0 ^(r) 
where the components of i/(r) are all homogeneous of degree r. According to 
Corollary (1.4) we have F G G(d) ** H{r) = 0 for all r>dn~l. Since the 
coefficients of each i/ ( r ) are Z-polynomial in the coefficients of F, the corollary 
is proved. 

(1.7) REMARK. Corollary (1.6) gives a possible approach to the Jacobian 
Conjecture. We have G(d) C J(d) C E(dy To show that G(d) — J(d) it would 
suffice to show, if possible, that dimG(d) = dim J(d) and that J{d) is irreducible. 

2. Some history of the Jacobian Conjecture. Let F: An
k -> An

k be a morphism 
with J(F) invertible. The Jacobian Conjecture claims then that F is invertible 
in the case k = C, or, equivalently, for any field of characteristic zero (Remark 
(1.1)4). It was apparently first formulated by O. H. Keller [K] in 1939. Keller 
curiously considers F with integer coefficients. He verifies the conjecture in the 
birational case, i.e. when F has an inverse formed of rational functions, i.e. 
k(F) = k(X) (cf. Theorem (2.1) below). 

For n = 1 the conjecture holds trivially. (Since F(X) = a ^ 0, F(X) = aX 
+ b9 and X = a~\F — b).) For n > 2 the conjecture remains open to the best 
of our knowledge. 

The case n = 2 is discussed in detail in Abhyankar's Tata Lecture Notes 
[Abl], where he proves the galois case: k(X) is galois over k(F). He also shows 
that the conjecture is equivalent to the curves Ft = 0 having only one point at 
infinity in P2 . He shows that they have at most two points at infinity, a result 
also proved by Makar-Limanov [M-L]. Nakai and Baba [N + B], generalizing 
a result of Magnus [Ma], prove the conjecture when one of dt = deg(jp;) is 
prime, or 4, or if dx — 2p > d2 with p an odd prime. Moreover Moh [Mo], 
using characteristic pairs and a computer search, has proved the conjecture 
when dy< d<> are < 100. Wright [Wrl] has shown that F is invertible iff J(F) is 
a product of elementary and diagonal matrices in GL2(k

[2]). Other approaches 
to the case n — 2 are discussed in Vitushkin [V], Fridman [F], and Razar [R]. 
An interesting discussion of the case n — 2, with connections to differential 
equations, is given by Meisters [Me]. 

For general «, many of the partial results are summarized by the following 
theorem. 

(2.1) THEOREM. Let k be afield and let F: A\ -> A^ be a morphism with J(F) 
invertible. Consider the following conditions. 

(2i)Fis invertible, i.e. k[F] = k[X]. 
(b)Fis birational, i.e. k(F) = k(X). 
(c) F:kn -* kn is infective 
(d) The integral closure k[F] of k[F] in k[X] is unramifiedover k[F]. 
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(e) k[ X] is a finitely generated k[F]-module. 
(e') F is proper. 
(f) k[X] is a projective k[F]-module. 
(g) k( X) is galois over k(F). 

ƒƒ char(fc) = 0 the conditions are all equivalent. In general we have 

(g) «- (a) ~ (b) « (c) 

(d) «- (e) ~ (e') « (f) 

except that k should be infinite for (c) => (b). 

The implications (d) => (a) and (g) => (a) invoke the simple connectivity of 
Cw, whose analogue in characteristic/? > 0 is false (Artin-Schreier coverings). 
The situation in characteristic p has recently been clarified by Nousiainen. 

(2.2) THEOREM (NOUSIAINEN [Nl]). Let k be afield of characteristic p > 0 and 
let F: An

k -* An
k be a morphism. The following conditions are equivalent. 

(\)J(F)is invertible. 
(2)klX] = k[X'iF](i.e.k[Xli...9Xn} = k[Xf,...,Xr,Fl9...iFn)) 
(3) The monomials Fq — Fx

qi • • • F*H (0 < q% <p) form a free basis of the 
k[XPymodule k[X]. 

Nousiainen [Nl] further gives the following example to show that k[X] need 
not be a finitely generated A:[F]-module (when J(F) is invertible), thus 
negating a conjecture of Wang [Wa]: Take n = 2, Fx = X, F2 = Y + XYP 

(writing X, Y for XXi X2). Then 

A ' H i Ï) 
is invertible, k[X, Y] = k[Fu F2][Y], and the equation of minimal degree of Y 
over k[F] is FXYP + Y - F2 = 0, so that y is not integral over k[F]. 

Nousiainen in [N2] studies the invariant 

j(k) = Inf{ [*(*): k(F)] | det J(F) = 1, k[X] * k[F]}9 

defined for any field k. The Jacobian Conjecture states that j{k) = oo if 
char(A:) = 0. If char(k) = p we have j(k)<p (n = 1, F = X + XP) and 
j(k)> 1 ((a) <=* (b) in (2.1)). Nousiainen shows that if k is an ultraproduct, 
k = II<̂  ka then j(k) >j(ka) for "almost all" a. With this he deduces for 
example that the Jacobian Conjecture follows if lim^F^) = oo. 

We now discuss the proof of (2.1). In the exact sequence, 

®k[F]/k ®k[F]k[X] -+Qk[x]/k ~* ®k[X]/k[F] ~* ° 

the matrix of / with respect to the bases (dFt ; ® 1) and (dXt\ respectively, is 
J(F). Thus 

(1) J(F) invertible ~ Qk[X]/k[F] = ° 

<=> k[X]/k[F] is unramified. 
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If x E kn and>> = F(x) the inclusion of local rings k[F]y -> k[X]x is unrami-
fied and they have the same residue class field k, hence the same completions 
[A + K, VI, (3.7)]. Consequently F is étale at x [A + K, VI, (4.5)]. Passing to 
the algebraic closure of k we see that F, being étale at all closed points, is étale 
[A + K, VI, (4.6)]. Thus 

(2) J(F) invertible ** k[X]/k[F] is étale (= flat and unramified). 

Flatness has the following useful consequence. 

(3) k[X] Dk(F) = k[F]. 

In fact let c — p/q E k[X] where p, q are relatively prime elements of k[F]. 
P 

Then the homomorphism k[F]/qk[F]^>k[F]/qk[F] is injective, so by the 
flat base change k[X] ®A:[F]-> yields an injective homomorphism 

P 
k[X]/qk[X] -+k[X]/qk[X]. This signifies that p and q are relatively prime in 
k[X]. But since c — p/q E k[X] we must then have q E k[X]x = kx and so 
c E k[F]. 

Now to the proof of (2.1). 
(a) => (c): Trivial. 
(c) => (b): In view of (1), k(X)/k(F) is separable so a generic fibre of F has 

[k(X): k(F)] elements. Therefore when Fis injective, [k(X): k(F)] = 1. 
(b) => (a): This is immediate from (3). 
(a) => (g): Trivial. 
(a) => (e): Trivial. 
(e) <=> (e'): A theorem of Chevalley asserts the equivalence of properness and 

finiteness for any affine morphism (cf. [Mu, Lemma (3.5.1)]). Note that when 
k = C properness in the topological and algebraic-geometric senses coincide. 

(e) => (f): Use (2) and the fact that a flat module is projective if it is finitely 
presented, e.g. finitely generated over a noetherian ring. 

(f) => (e): Over any integral domain a projective module of finite rank is 
finitely generated. 

(e) => (d): If Fis finite then k[F] = k[X], which is unramified over k[F] by 
(1). 

Suppose now that A: = C. 
(d)=>(b): If C[F]/C[F] is unramified then (as in the derivation of (3) 

above), it is étale and finite, and so 

Spec( C[F] ) - Spec(C[F]) ^ Cn 

is a (connected) covering. Since Cn is simply connected we have C[F] = C[F], 
and hence C(F) = C(X). 

(g) => (b): Consider the commutative diagram 

= Spec(C[X])^Cw 

= Spec(C[F]) 

= Spec(C[F])=C\ 
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By Zariski's Main Theorem the birational morphism V -» W of normal varie­
ties is an open immersion; we identify V with an open subvariety of W. It is 
contained in the set U of points of W where F is étale, since_F is étale. The 
group T = Gal(C(X)/C(F)) acts freely on U so that F: U -* F(U) is a galois 
covering with group I\ The morphisms F and F9 being flat, are open [A + K, 
Chapter V, Theorem 5.1]. We have Codimy(y - F(U)) > Codimy(y - F(V)) 
> 2 since C[F] is a UFD and C[X]X = C x . It follows that F(U) is simply 
connected, so the covering U -> F(U) is trivial. Therefore F, and so also F9 are 
birational. 

Much of Theorem (2.1) is folklore. Many of the arguments above are 
adapted from Wang [Wa], especially the implications in positive characteristic. 
The most substantial result is (g) => (a). This was first proved by Campbell [C], 
who remarks several of the other equivalences as well. He uses methods of 
several complex variables. As remarked above Abhyankar [Abl] proved the 
case n = 2. Algebraic proofs of (g) => (a) can be found in Razar [R], Wright 
[Wr2], and Oda [O]. Wright gives an algebraic proof of the simple connectivity 
of Cw, as well as the following differential criterion for the Jacobian Conjecture, 
discovered independently by P. Nousiainen (cf. [N + S]). 

Define derivations A,: C[X] -+ C[X] by 

àl(G) = âetJ(Fl9...,Fi_l9G,Fl+l9...,FH). 

Assuming that deg J(F) = 1 we have 

Ai(FJ) = 8ij (i,j=\,...,n). 

Thus the A/s commute in C[F] and hence also in C[X] since &C[X]/C[F] = 0 
((1) above). Since the 9 /9^ form a basis of 0C[F]/c ^ follows, again from (1), 
that A,,... ,AW is a QA^-basis of QC[x]/c ^n particular the Dt are QXJ-linear 
combinations of A , , . . . ^ . It follows that r^Ke^A,) C n,.Ker(/),-) = C. 
Finally note that the A, are locally nilpotent in C[F]. 

(2.3) PROPOSITION (CF. [Wr2, PROPOSITION 2.2] OR [N + S]). If the deriva­
tions A, are locally nilpotent {in C[X]) then C[F] = C[X]. 

The derivations A,, can be used to relate the Jacobian Conjecture to a 
problem about the Weyl algebra A n — C[ Xx,..., Xn, D j , . . . , Dn ] pointed out to 
us by L. Vaserstein and by V. Kac. Here we identify An with an algebra of 
linear operators on C[X], Xi being identified with multiplication by Xt. Then 
we have the relations [Xi9 Xj] = 0 = [Di9 Dj] and [Di9 Xj] = «0 (1 < ij < n). 
Moreover these relations define a presentation of An. 

It is unknown whether every endomorphism of the C-algebra An is an 
automorphism. If this were so the Jacobian Conjecture would follow. Indeed, 
given F as above with det J(F) = 1, define A,, as above; then we have an 
endomorphism <p of An defined by q>(XÉ) = Fi9 ̂ {D^ = A, (/ = 1,...,«), since 
the defining relations are preserved. Suppose that <p is an automorphism of An. 
Then since ad(D/): H H> [Di9 H] is a locally nilpotent derivation of An9 it 
follows that ad(Ay) is likewise locally nilpotent. It follows then from (2.3) that 
C[F] = C[X]9 as claimed. 

We mention finally the following significant result. 
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(2.4) THEOREM (S. WANG [Wa]). Let k be a field of characteristic ¥= 2. Let 
F G End(A^) have invertible Jacobian J(F). Assume that deg(F) < 2. Then F 
is invertible. 

This result was rediscovered by S. Oda [O], with a much simpler proof than 
Wang's. A slight elaboration of Oda's argument is presented in [Wr2, Lemma 
3.5]. The argument is so short that we reproduce it here. In view of Theorem 
(2.1), condition (c), it suffices to show that F is injective. Suppose, on the 
contrary, that F(a) = F(b) with a ¥> b in kn. Replacing F(X) by G(X) = 
F(X + a) - F(a), we have 0 = G(0) = G(c) where c = b - a =£ 0, and G is 
still quadratic; write G — G(1) + G(2) where the components of G(d) axe homo­
geneous of degree d(d= 1,2). Then 

0 = G(c) = (?(1)(c) + G(2)(c) 

= G(1)(c) + 2/0G(2)(c) (t0 = 1/2) 

= |(C(.,(c)/+<? (2)(c)/a)U0 

= jt(G(tc))\t=to = J(G)(t0c).c. 

Since/(G), l ike/(F), is invertible, and c ¥= 0, this is a contradiction. 
This theorem tempts one to conjecture, as does Oda, that the Jacobian 

Conjecture might be true in characteristic p > 0 for morphisms F of degree 
d<p. However this cannot be so since we show below that the Jacobian 
Conjecture (in any characteristic) follows once it is known for morphisms of 
degree < 3. 

3. Faulty proofs. Several alleged proofs of the Jacobian Conjecture have been 
published. While it is "well known to the experts" that these proofs are faulty, 
it proved surprisingly difficult for us to document a precise critique, even 
unpublished, for each of them. It is therefore perhaps worthwhile to publish 
this account of our findings. 

W. Engel [E] in 1955 claimed to prove the case n = 2. Vitushkin [V] in 1975 
published two essential errors in Engel's argument. 

B. Segre has published three incomplete proofs of the Jacobian Conjecture. 
The first one in 1956 [Sel, §22, no. 130] argues essentially as follows. Consider 
the geometric degree d = [C(X): C(F)] of F. From Keller [K] one knows that F 
is invertible in the birational case (d = 1), so one seeks to show that d = 1. 
Modifying F by an affine linear automorphism (Remark (1.1)1) we may 
assume that for each i = 1,...,«, 

Fi ~ %i "*" î(2) + ^(3) + ' • • 

with each Fi(r) homogeneous of degree r. The invertibility of / ( F ) then implies 
that det J(F) = 1. Let t G C x and conjugate F by the homothetic Xv-* tX to 
obtain F' with 

(0 F> = X( + tFi(2) + t2Fi0) +•••. 
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Note that J(F')(X) = J(F)(tX) so that det J(F<) = 1. Moreover (1) defines 
F' even for / = 0, when F° = X (the identity morphism). Thus (1) describes a 
homotopy from F — Fx to the identity F°. Evidently the geometric degree of 
F' is the same d for all / G C x . Segre pretends to reason that this remains so 
for / = 0, whence d — 1. This argument is couched in terms of evaluation of a 
certain volume integral on P" in which t figures as a parameter, and the claim 
that the integral varies continuously with t. 

Now it is known that the geometric degree is a homotopy invariant only for 
proper morphisms. If indeed Segre could verify that F was proper then, as we 
saw in Theorem (2.1), the invertibility of F would easily follow. Of course the 
F* above are proper outside a proper subvariety V\ but Vt varies with t so the 
difficulty remains. 

Segre's second attempt [Se2], shortly afterward, makes the stronger claim 
that if det J(F) = 1 then F belongs to the group EAn(k) generated by 
"elementary" or "Jonquieres" automorphisms. (F is elementary if, for somey, 
Ft = Xt for i ¥=j and Fj — Xj is independent of Xj.) This claim is equivalent to 
the conjunction of the Jacobian Conjecture and the "Tame Generator Conjec­
ture" that GAn(k) is generated by EAn(k) and GLn(k). Segre asserts that the 
claim is very likely a theorem for all n9 and he offers a proof for n — 2. He 
cites the earlier proof by Jung [Ju] of the Tame Generator Conjecture for 
n = 2, and the "proof by Engel [E] of the Jacobian Conjecture for n = 2, as 
well as Segre's own earlier "proof of the Jacobian Conjecture for general n 
[Sel]. 

Segre rightly calls attention to the following lemma in his proof as having a 
special interest. 

SEGRE'S LEMMA. If f and g in C[T] are nonconstant and generate the 
polynomial algebra C[T] then one of deg( ƒ ) and deg(g) divides the other. 

Segre derives as a consequence of this that every embedding of the line in 
the plane is equivalent to a linear embedding. 

Canals and Lluis [C + L] later noted an error in Segre's proof of his lemma, 
and published a correction. 

The fundamental paper of Abhyankar and Moh [A + M], Embeddings of the 
line in the plane, states Segre's Lemma as its "Main Theorem," and takes is 
title from the above consequence. (Their version also applies in characteristic 
p > 0.) It is pointed out that not only is Segre's proof faulty, but so also is the 
correction by Canals and Lluis, as conceded in correspondence quoted from 
the latter. 

However there is strangely no reference to Segre's attempted proof of the 
Jacobian Conjecture, in which his lemma, now correctly proved by Abhyankar 
and Moh, figures. After considerable inquiry, Joel Roberts has kindly com­
municated to us the following critique of that aspect of Segre's paper. 

Segre considers a map F = ( ƒ, g): C2 -> C2 with J(F) invertible. On p. 16 
of [Se2] he chooses (a, b) GC 2 where the leading homogeneous terms of ƒ and 
g are nonzero, and he introduces the map P: C -* C2 defined by P(t) = 
F(ta, tb). From the Chain Rule and invertibility of J(F) one sees that 
(d/dt)f(ta, tb) and (d/dt)g(ta, tb) have no common zeros, and hence that P 
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is an immersion. However Segre claims [Se2, p. 16, lines 7-9] that the curve 
P(C) C C2 is nonsingular, which is equivalent to P being injective. This of 
course must be so if F is to be invertible, but no adequate justification of the 
claim is given by Segre. 

In 1960 Segre proposed a third proof of the Jacobian Conjecture [Se3, §14], 
couched in topological terms. He views F: Cn -> Cn as a rational map from 
V = Pn to V' — Pw defined and locally invertible outside the hyper-plane H^ 
at oo. He takes from V' the sub variety W' consisting of the branch locus and 
all points with positive dimensional F-fiber. Then he asserts that F defines a 
(topological) covering from V* = V - H^ (= Cn) to F * = V' - W. In fact 
it is not clear why F even maps V* into V'*9 and, if so, why, in the absence of 
properness conditions on F, such a map must be a covering. 

Segre in [Se3] proposed the problem of finding a purely algebraic proof of 
the Jacobian Conjecture. Gröbner responded with such a proof in 1961 [Gr]. 
Zariski pointed out to Barsotti, reviewer of the article, that "formula (14) on p. 
121 contains a computational error which invalidates the proof." Indeed, 
Marilena Pittaluga has shown us an automorphism of C2 for which the 
derivatives dx\/dyj Gröbner claims, using (14), are finite, are in fact infinite. 
She notes, moreover, that in deriving a contradiction Gröbner never uses his 
hypothesis that his map is not birational, so that the argument has to be faulty. 

Shafareviö [Sh] in 1967 gave the group GAn(C) as an example of an infinite 
dimensional algebraic group (in the sense he there introduced), stating that it 
was defined in the space of polynomial «-tuples F= (Fl9...9Fn) by the 
condition det J(F) E C x . His belief that this had been established was 
apparently an oversight, as he later conceded in private communications. In 
this connection Corollary (1.6) is relevant. 

S. Oda's preprint [O] contains an alleged proof of the Jacobian Conjecture 
(Theorem 4 of [O]). The error in Oda's argument occurs in his Lemma 2(e), 
which is misquoted from Murre ([Mu, p. 39]), and which is trivially false in the 
form stated by Oda. 

4. The use of stabilization and formal methods. We present below what 
appears to be a new approach to the Jacobian Conjecture, based on two simple 
ideas. 

The first is the "stabilization philosophy" of algebraic ^-theory: A problem 
posed in dimension n may become simpler if looked at in dimension n + m. 
This is implemented here as follows: 

Let F= (F,,...,FW) E End(A^) have invertible Jacobian J(F). For any 
m>0 consider 

F^ = (Fl,...,F„,Xn+l,...,Xn+m)eEnd(A"k
+'"). 

Then 

is still invertible, and F is invertible iff F[m] is invertible. Now we are able to 
show that for m large, there exist G, H E GAn+m(k) such that E = 
G o F[m] o H is a specialization of a morphism of the form X + N where each 
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Nt is a cubic homogeneous polynomial and J(N) is nilpotent (Theorem (2.1) of 
Chapter II).5 

The other idea is embodied in Remark (1.1)2 above: assuming that F(0) = 0 
and J(F)(0) is invertible then F has a formal inverse G = (G,,... ,GW). Thus 
the Jacobian Problem is not whether an inverse exists, but rather whether this 
formal inverse G is really a polynomial when J(F) is invertible. To seriously 
consider the problem from this point of view one needs a formula for G. Until 
recently such inversion formulas were relatively inaccessible, which presumably 
explains why this quite natural approach has not earlier been pursued. 

The inversion formulas in question are of the following type. Let F = 
(Fl9... ,Fn) where for each i, Ft G k[[Xl9.. .,*„]] = k[[nU and i*; = X, + terms 
of degree > 2. We seek formulas for the unique Gl9...,Gn in k[[n]] such that 
Gt(F) = X%f (i = 1,...,«). In the classical case one has k = C. The case n = 1 
goes back to Lagrange. Call F "diagonal" if Ft = XiHi for some Hi E k[[n]]; 
this is automatic if n = 1. Lagrange's inversion was generalized to n variables 
in the diagonal case by I. J. Good [G] in 1960. Good cites earlier treatments of 
the case n = 2 by Stieltjes and Poincaré, and independently, by Goursat. Ira 
Gessel recently pointed out to us that, in fact, Good's inversion formula was 
published (in Latin) already by Jacobi in 1830 [J]. 

To the best of our knowledge the first general inversion formula was derived 
by Gurjar (unpublished) in 1974, using Goursat's complex variable methods. 
Gurjar was then a student of Abhyankar, who found a simpler form and 
algebraic proof of the inversion formula. This appears in Abhyankar's Purdue 
Lecture notes [Ab2] in 1974. Since it is so fundamental for the sequel, we 
reproduce Abhyankar's formula and proof here in Chapter III (Theorem (2.1)). 

Since writing the first draft of this paper we discovered first Good's paper 
[G], covering the diagonal case, and later the 1978 paper of S. A. Joni [Jo]. 
Joni, in her 1976 dissertation, apparently rediscovered a general inversion 
formula without knowledge of Abhyankar's. 

For application to the Jacobian Conjecture we assume, thanks to the results 
of Chapter II, that Ft = Xt — Ht where H is a cubic homogeneous form and 
J(G) is nilpotent. The final result is an expansion of the inverse series Gt 

indexed by finite, rooted, and labeled trees (Chapter III, Theorem (4.1)). This 
formula gives some hope of showing that Gt is a polynomial. The method it 
affords is illustrated by calculations in Chapter III, §5, where a precise 
Conjecture (5.1) is formulated. 

It is remarkable that Good [G] also uses his inversion formula for problems 
of enumerating rooted colored trees. This suggests perhaps some combinatorial 
interest of our formula. 

5 Since writing this paper L. Avramov has kindly brought to our attention the very interesting 
paper of Jagiev [Ja] (1980). Jagzev proves a theorem substantially equivalent to our Reduction 
Theorem (2.1) of Chapter II, though with some differences of detail, and by somewhat different 
methods. He rediscovers the implication (c) => (a) of Theorem (2.1) above, and uses it, as in [Wr2], 
to prove Wang's Theorem ((2.4) above), which, he, like Oda [O], rediscovered. He further uses it to 
show that, for F = X + N as above, F is invertible provided that / ( F)( X) + J( F)( Y) is invertible 
over k[2n\ where Y = ( 7 , , . . . , Y„) denotes n new indeterminates. 
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The discovery of Abhyankar's inversion formula gave the original impetus 
for this work, which may fairly be considered to be an effort in High School 
Algebra, in Abhyankar's sense [Ab3]. 

We are grateful to numerous colleagues for helpful comments on this work, 
notably to the auditors of Bass' lectures on it at the Tata Institute in the fall of 
1980, especially R. Raghunathan. Specifically we are indebted to Joel Roberts 
for a critique of Segre's paper [Se2], to Francesco Scattone for translation of 
[Se3], to Marilena Pittaluga for a translation and critique of [Gr], to Ofer 
Gabber for Theorem (1.5) of Chapter I and for some simplifications of 
Chapter III, to M. P. Murthy for collaboration on Theorem (6.2) of Chapter II, 
which proves the Jacobian Conjecture for F = X — H when J(H) is nilpotent 
of rank 1, to L. Avramov for help in translating the new paper of Jagzev [Ja], 
and to Dan Grayson for computer tests of our Conjecture (5.1) (which implies 
the Jacobian Conjecture). Finally we thank Kate March and Clara Gama for 
typing of the manuscript, and Dorothea Goldys-Bass for the tree figures in §5 
of Chapter III. 

II. THE REDUCTION THEOREM; DEGREE 3 WITH UNIPOTENT JACOBIAN 

1. Notation, k denotes a commutative ring. For each integer « > 0 w e put 

n = { l , 2 , . . . , n } , and Xn = (Xl9...9XH) 

where the Xt are indeterminants. When n is understood we often write X for 
Xn. We have the polynomial algebra, 

kW = k[X]=k[Xl9...,XH]9 

and we put 

MAn(k) = (kMy={F=(Fl,...,Fn)\Fiekl"K i = l , . . . , n } . 

On MAn(k) we consider the following two structures. 
1. Monoid. The composition is 

FoG = F(G) = (Fl(G)9...9FH(G))9 

with neutral element X. This monoid is isomorphic to End(A^), and anti-
isomorphic to End^.^^" 1) . Its group of invertible elements is the affine 
Cremona group 

GAn(k)^Kxi\{K\). 

2. Graded k-algebra. We give MAn(k) the (cartesian) product ring structure 
(coordinatewise operations) with grading 

MAn{k\d) = (wy 
coming from the grading of k[n] by the modules k[

d
n] of forms in X of degree d 

for each d>0. If F G MAn(k) we write F=ld>0F(d) where F(d) = 
(F(d),\>-->F(d),n) is t n e ^ t n homogeneous component of F9 and F(0) = F(Q). 
The largest d for which F(d) ^ 0 is called the degree of F9 and denoted deg(F). 



THE JACOBIAN CONJECTURE 303 

We have the Jacobian 

J: MA„{k) - M„(*M), 

'D.F, ••• Z)„f, 

\D,Fn • • DnFn 

D' = U J(F) = 

which satisfies 

J(G(F))=J(G)(F)-J(F). 

Note that J(F)(0) = J(F(l))(0) is just the matrix corresponding to the linear 
endomorphismF(1)ofAV 

We put 

MA°n(k)={FEMAn(k)\F(0) = 0} 

= 0 MAn(k\d). 

This is an ideal of the ring MAn(k\ and 

J0: MA°„(k) - Mn{k\ 

Jo(F)=J(F)(0) 

is a monoid homomorphism, whose kernel we denote 

MAl(k) = {F\F(0) = 0 and / (F)(0) = I} 

= {F\F = X mod MA°„(k)2}. 

For any d^Owe could thus consistently define 

MAd„(k)= [F\F = Xmod MA°„(k)d+1}. 

This corresponds to the kernel of the natural homomorphism 

where the superscript 0 denotes endomorphisms stabilizing the ideal (X) of 
A:Iw].Weput 

GAi(k) = GAn(k) H MAd
n(k) (d>0). 

(1.1) PROPOSITION. Let F E MAn(k). Then 

F=(X+F(0))oF+ 

where F+ = F(l) + F(2) + • • • E MA°„(k), If J(F)(0) (or, equivalently, F(l)) is 
invertible then 

(1) F=(X+F(0))oFmoF' 

where F' E MA\(k). Moreover F is invertible iff F' is invertible. 
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This is clear, and it shows that, for the Jacobian Conjecture, one may restrict 
attention to elements F E MA\(k). For GAn(k), (1) gives a decomposition into 
the product, 

GAn(k) = Tn(k) • GLn(k) • GA\{k), 

where Tn(k) is the group of translations and GLn(k) is identified with the 
group of linear homogeneous elements of GAn(k). 

Call F E MAn(k) elementary if, for some 7, Ft — Xt is zero for i ¥=j, and 
independent of Xj for / = j . Such an F is clearly an automorphism (( F~l )t — Xt 

= -(Ft — Xt)). The group generated by all elementary automorphisms is 
denoted EAn(k), and we put 

EAd„(k) = EAn(k) n MAd„(k) (d > 0). 

For / n ^ O w e define the stabilization map 

MAn(k)->MAn+m(k), 

F\-*F[m], 

where 

F = \F\9> - ->En, Xn+l,.. .,Xn+m). 

This is a monomorphism of monoids. Observe that 

^-(v i) 
and that F is invertible iff F[m] is invertible. Further MAd

n(k){m] C 
MAd

n+m(k) for d>0 and EAn(k)[m] C EAn+m(k). Passing to the limit as 
n -> 00 one obtains EA(k) C G 4̂(A:). Conjecturally the commutator subgroup 
[G./4(A:), Gv4(A:)] equals EA(k). Connell [Co] has shown that it is at least the 
normal closure of EA(k). 

2. Statement of the Reduction Theorem. 

(2.1) THEOREM. Let k be a commutative ring, and let F E MAl
n(k) have 

invertible Jacobian J(F). There exist an integer m>09 elements G, H E 
EA®+m(k), and F(T) E MAn+m(k[T]% where T is an indeterminate, with the 
following properties. 

(a) For T= I we have F(\) = G ° F[m] o H. Thus if F is invertible then so 
also is F. 

(b) The k[T y algebra endomorphism <pp of k[T][n+m] defined by F can be 
viewed as a k-algebra endomorphism ofk[Xx,...,Xn+m,T] = k[r\ where r = n 
+ m + 1. As such it defines an element L E MAr(k), which is invertible iff F is. 
We have L = Xr + N where N is cubic homogeneous (N = iV(3)), and linear in 
each variable except quadratic in T, andJ(N) is nilpotent. 

(2.2) COROLLARY. Suppose, for all n and all F E MAn(k) of the form 
F= X + N with N cubic homogeneous and J(N) nilpotent, that F is invertible. 
Then for all n and all F E MAn(k) with J(F) invertible, F is invertible. 
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The Reduction Theorem will be proved in three steps, each of which 
furnishes slightly more general information. 

Step 1. Reduction to degree 3 (§3). 
Step 2. Making/(F) unipotent (§4). 
Step 3. Homogenization (§4). 

3. Reduction to degree 3. 

(3.1) PROPOSITION. Let F G MAn(k). There is an integer m>0 and elements 
G, H in EAl

n+m(k) such that F' = G <> F[m] o H has degree < 3. By allowing H 
to be taken from EA°n+m(k) we can further arrange that F' be linear in each 
variable. 

Put d— deg(F) and let e denote the number of monomials of degree d 
occurring in F — (Fl9...9Fn). We prove the first assertion by induction on 
(d9e). If d < 3 there is nothing to prove, so assume that d > 4. Let M be a 
monomial of degree d occurring in F9 say in F{9 with coefficient a G k. Write 
aM — PQ with P and Q both of degree < d — 2. Consider the following 
elements of EAl

n+2(k). 

H = (XX9...9Xn9 Xn+l + P9 Xn+2 + Q). 

Then F' = G o F[2] o His given by, 

(2) F = (F[, F29...,Fm, Xn+l + P, Xn+2 + fi), 

where 

(3) F{ = Fl-(X„+i+P)(X„+2 + Q) 

= (F, - aM) - Xn+iQ - PX„+2 - Xn+lXn+2. 

Clearly either deg(F') < d or else deg(F') = d and e(F') < e. By induction 
therefore there exist m > 0 and G', H' G EA\+2+m(k) such that F" — 
G' o F'[m] o ̂ ' has degree < 3. Since F' = (G' o G[m]) o F[2+m] o (H[m] o H') 
and the outside factors belong to EAl

n+2+m(k)9 the first assertion is proved. 
To prove the final assertion we may therefore assume that F already has 

degree < 3. If M = X? • • • Xe
n» put e/M) = er If ƒ G k[n] write M G ƒ if M 

occurs (with nonzero coefficient) in/ , and put 

' ( / ) = 2 2 Max(ey(M)-l,0)2. 
MSfj=\ 

Thus e( ƒ ) ^ 0 and e( f ) = 0 iff ƒ is linear in each variable. Put e(F) = e(Fx) 
+ • • • +e(Fn); we argue by induction on e(F) to make e(F) = 0. 

Suppose that e(F) > 0. Some i*), say Fl9 contains a monomial M, say with 
coefficient a G k9 divisible by Xj for some j . Write aM = PQ so that Â  
divides both P and g. Now define G, i/, and F' = G ° F[2] o H as in formulas 
(1) and (2) above. Then G G JMjl+2(*), /f G £^^+2(A:), and one can verify 
from (2) and (3) that e{F') < e(F)9 using the fact that M = XfN with AT of 
degree < 1. Now arguing as in the first part of the proof, we conclude by 
applying the induction hypothesis to F'. 
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4. Proof of the Reduction Theorem. Let F G MA\{k) have invertible Jacobian 
J(F). Let F' = Go F[m] o H as in Proposition (3.1). Then F = F('1} + F('2) + 
F('3) and F' is Hnear in each variable. Moreover 

^i) = <?(i) ° (̂S)m] o Hm = Hm G £ ^ + m ( f c ) . 

Consider 

F" = F[^ oF> = X+ F^(F^) + F^(F^) 

in MAl
n+m(k). Clearly F" is still linear in each variable (which is not neces­

sarily the case for F' © Ffc]), and deg(F") < 3. Replacing F by F" we are thus 
reduced to the case: deg(F) < 3 and Fis Unear in each variable. 

Let Tbe an indeterminate. Put 

E(T) = X+ TFm + T%y G MA\{k[T\). 

We have J(E(T)) = 1+ 77(F(2)) + T2J(F(3)) = J(F)(TX), so that J(E(T)), 
like J(F), is invertible. In A:'2"1 denote the variables by (X, Y) = 
( Xx,..., X„, Y,,..., Y„ ). Consider the elements 

G(T) = (X+ TY,Y) 

H(T) = (X,Y-TF0)) 
EAlMT]) 

and put E'(T) = G(T) ° £ (7) ' " ' o H(T). We have 

E'(T) = (E(T) + (Y-F0)T)T,Y-F0)T) 

= {(E(T) - F(3)T
2) + YT, Y- F0)T) = (X, Y) + NT 

where N = (F(2) + Y, -F(3)). We have J(E'(T)) = I + J(N)T G 
GL2„(k™[T)), and 

\Afm) o) 
The following lemma apphed to the ring A = M2n(k

[2n])[T]9 graded by powers 
of r , and to the element a = J(N)T G Al9 shows now that J(N) is nilpotent. 

(4.1) LEMMA. Let A = A0® Ax@ • • • be a graded ring, and let a G Ad for 
some d > 1. Then 1 + a is invertible iff a is nilpotent. 

In fact the inverse must be 2 m > 0 ( - a ) m -
Now setting T = 1 we obtain the element 

F'= E'(\) = G(\) o E(l)ln] o H(\) 

= G(l) o F[n] o H(\) = (X, Y)+N 

where G(l), H(l) G EA°2n(k) and N = (F(2) + Y9 -F(3)). Thus we may replace 
F by F' and reduce to the case: 

F = X + N, 
N = N(l) + iV(2) + JV(3) is cubic and linear in each variable, and 
J(N) is nilpotent. 
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In this case we put 

F(T) = X+N(T)9 where N(T) = N(X)T
2 + N(2)T + N(3). 

For T = 1 we have F(X) = F. Identifying k[n+l] with k[Xl9... ,X„9 T]9 we have 
the fc-endomorphism defined by F9 

L = (Fl9... 9Fn9 T) = (F, T) = (X, T) + (JV\0) 

with Jacobian 

J(L) = I+{J*W 
\ 0 

w(2) + 2W(1)r 
0 

which is unipotent iff JX(N) is nilpotent. Since N is cubic homogeneous in 
(X9T)9 and linear in each Xt and quadratic in T9 we will have established all 
claims of the theorem once we show that JX(N) is nilpotent. 

Let A = A0 0 Ax 0 • • • be a graded ring. Grade A[T] by 

A[T]d = A0T
d 0 AxT

d~x 0 • • • ®Ad. 

Putting T = 1 gives a linear isomorphism 

AT]jr-+A(d) = A0®AX®..- ®Ad. 

Its inverse sends a - a0 + ax + • • • +ad G i4(</) to a ( J ) = a0T
d + axT

d~l 

+ • • • +ad. Let 6 G i<(0 and put c(T) = a(d\T)b(e)(T) E A[T]d+e. Since 
c(l) = a(d\l)b(e\\) = abE A(d+e) we conclude that 

< W > = (o&)(rf+e). 

Consequently 
( f l «0)" = (<,")<""> 

for JV > 1. It follows that a is nilpotent iffa(d) is nilpotent. 
Now take A to be the ring Mn(k

[n]) = Mn(k)[n\ graded by JT-degree, and let 
a = J(N) = J(N(X)) + J(N(2)) + J(N(3)) G A(2y We have a(2) = J(N(X))T

2 + 
J(N^)T + /(JV(3)) = JX(N). Since/(N) is nilpotent it follows, as claimed, that 
JX(N) is nilpotent. This completes the proof of Theorem (2.1). 

5. ^-linearization and unipotent reduction. The argument in proving Theorem 
(2.1) to make J(F) unipotent was applied only after F was made cubic. We 
record here the information that argument yields in general. 

(5.1) PROPOSITION. Let F E MAn(k[T]) and write F = F(0) + F^T 
+ • • • +F{d)Td with each Fu) G MAn(k). Suppose that d>2. There exist 
G(T\ H(T) G EA°dn(k[T]) such that G(0) = H(0) = Xdn9 and such that the 
element F = G" p[{d-\)n) 0 JJ nas the following form: Denote the variables Xdn 

M * < V . , * < * > ) W / K 7 ^ 

F = {FV>,XP9...,XP) 
+ (F<1> - Xid\ F<d\ F^"1) - AT<2>,...,F(2) - Xi?-»)T. 

Thus F' is linear in T, and involves the same X-monomials as F[^d~l)n\ 
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In the proof we shall write X(J) for X^J\ We start with 

Gx = {X^-X^Td~\X^), 

HX = (X«\XW + F^T) 

in EA°2n{k[T])9 and put Fx = Gx<> F[n] o Hx. (This abusive notation should not 
confuse F, with the first component function of F.) We have 

Fx = ((F-F^Td) - XV>Td~\ X& + F^T). 

Next take 

G2 = (X^ - X^Td~\ X<2\ *<3>), 

H2 = (*<>>, X<2>, *<3> + (F^"1) - X&)T) 

in EA°3n(k[T])9 and put F2 = G2 ° Fx
[n] o H2 = (F2

(1), F2
(2>, F2

(3>), where 

^(i) = (F- F(d)Td - F{d~X)Td~x) - X(3)Td~2
9 

Fp = X& + F<'>7\ 

Ff) = X& + (F<d-V - X&)T. 

Now we continue inductively to produce Fj = Gj ° Fjü\ o Hj9 where 

Gj = (*(1) - XV+»Td-J, *<*>,...,*<>+1>), 

Hj = ( ^ , ) , . . . , ^ > , Af<>+1> + ( F < ^ ' + 1 > - jr">)r), 

forj = 29...9d — 1. The F' of the proposition is Fd_X9 which is easily seen to 
be of the alleged form. 

(5.2) PROPOSITION. Let F G MA\{k) be of degree < d + 1. There exist 
elements G, H G £^2„(^) MC/I /AU/ /te étemel F' = G <> F[(d~l)n] o H has the 
following form. Writing Xdn = (X^\...9X^d)) as in Proposition (5.1), we have 
F' = Xdn + N where 

N = (F ( 2 ) - *<«>, F(d+X)9 F(d) - X?\...,F(3) - *<«"«>). 

IfJ(F) is invertible then J(N) is nilpotent. 

Put 

E(T)= 1F(J)P-' 
7=1 

= Xn + F(2)F + • • • +F{d+X)T
d G M4(d[T]) . 

Apply Proposition (5.1) to E = 2?=0F0)F> with EU) = F(j+X) to obtain G(T)9 

H(T) in F^°n(A:[r]) such that E\T) = G(T) o E(r)U'-i>«l o # ( r ) has the 
form F'(^) = d̂n + NT w i t h # a s above. Setting T = 1 we obtain F = F'(l) 
= G(l) o ƒ-[<<*-D«] o # ( i ) with G(l), H(\) G F^n(A:). 

Suppose that / ( F ) is invertible. We have J(E) = ljJ(F(j))T
J~\ Since 

/(F (y)) is homogeneous of degreey - 1 in X we have J(E)(T9 X) = J(F)(TX); 
hence / ( F ) is invertible. Therefore J(E') = I + J(N)T is also invertible. 
Applying Lemma (4.1) as in §4 we conclude that J(N) is nilpotent. 
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6. Nilpotent rank 1 Jacobians. Theorem (6.2) below affirms the Jacobian 
Conjecture for maps F= X — H when J(H ) is nilpotent of rank 1. This result 
was obtained in collaboration with M. P. Murthy, to whom we are grateful. 

(6.1) PROPOSITION. Let k be afield of characteristic zero. Let T G k[n] and let 
r denote the dimension of the k-vector space generated by DxT,...,DnT. There is 
a special linear change of variables XtY-+ Lt such that, if S = T(L), then S 
depends only on Xx,...,Xr, and DXS,... ,DrS are linearly independent over k[S]. 

If Lj = 2, LtJXi9 each Ltj G k, then 

D,S = 2(DjT)(L) • (DtLj) = 2{LU(DJT))(L). 
J J 

Thus we can choose (Ltj) G SLn(k) so that DXS,... ,DrS are linearly indepen­
dent over k, and Dr+lS = • • • = DnS = 0, so that (since char(A:) = 0) S 
depends only on Xx,...,Xr Suppose, finally, that there is a relation 
2-= 1 P,(S)(Z),S) = 0 with each P,(S) G k[S] and with some Pt ^ 0. We may 
assume that Px,... ,Pr have g.c.d. 1 in k[S], so that, for S = 0, some Pt(0) ^ 0. 
Then we have a nontrivial congruence Y>r

i=:XPi(ö)(DiS) = 0 mod S • k[n]. Since 
the left side has ^-degree < deg(S), we must have Ti=lPi(0)(DiS) = 0, con­
tradicting the A>linear independence of DXS9... 9DrS. This proves the Proposi­
tion. 

(6.2) THEOREM. Let k be a field of characteristic zero. Suppose that F G 
End(Aw

A:) is of the form F- X- H where H(0) = 0 and J(H) is nilpotent of 
rank 1. 

(a) The integral closure of k[Hl9... ,Hn] in k[n] is a polynomial ring k[T]for 
some T G k[n]. 

(b) There is a linear automorphism L of A\ such that if S = T(L) then, for 
some r> 1, S depends only on X{9...,Xr andDxS9...9DrS are linearly indepen­
dent over k[S]. 

(c) Put F' = L~l o F o L. Then F = X- K where each Kt depends only on 
Xl9.. .9Xr (in fact Kt G k[S]) andKt = 0for i < r. 

(d) F' is a product of elementary automorphisms. In particular F is invertible. 

(6.3) COROLLARY. Let k be afield of characteristic zero and let F G End(Aw
A:) 

be of the form F= X- H with H(0) = 0 and J(H) nilpotent. If n = 2 or if 
n = 3 and J(H)2 = 0 then F is a product of elementary automorphisms and, in 
particular, is invertible. 

Indeed under the conditions of the Corollary J(H) must have rank 1. 
PROOF OF THEOREM (6.2). From the exact sequence 

k(X) ®k(H)®k(H)/k ~* ®k(X)/k ~* ®k(X)/k(H) "* 0 

and the condition, rank J(H) = 1, we conclude that T3Lnkk(X)Qk(X)/k(H) = 

n — 1. Since char k = 0 it follows that the transcendence degree of 
k(X)/k(H) is n - 1 (cf. [Mat], (27.B)), and so that of k(H)/k is 1. It follows 
therefore from [A + H + E], (2.6), that the integral closure of k[H] in k[X] is 
a polynomial ring k[T], whence (a). Now (b) follows from Proposition (6.1). 
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Writing H = Q(T)9 where Q = (Ql9..., Qn)9 each g, G k[T]9 we have F = X 
- K where K=L~l HL = L~\Q)(S)9 and where S = r(L). Let L~\Q) 
= R = (Rl9... 9Rn)9 so that #, = Rt(S) G k[Xu... ,Xr]. The Jacobian of À: is 
the rank l matrix 

J(K)=\ : 

\K(S) 

which, being nilpotent, has trace 

(DxS,...,DrS,0,...,0) 

Tr(J(K))= 2R'I(S)(D,S) = 0. 
i=\ 

Since D{S9... 9DrS are Hnearly independent over k[S] we must have #i(S) = 

• • • = R'r(S) = 0. Therefore (char(A:) = 0) R}(S)9... ,£ r (S) are constants. But 
since #(0) = 0 we have #,(0) = 0 for all i < r, and so Rx = • • • = £,. = 0. 
This proves (c). It is clear that F' is the product of the (commuting) elementary 
automorphisms EU) (j = r+ l , . . . ,/i) defined by E$j) — Xt for i¥*j and 
Fj y ) — Xj — Kj. This proves (d), and completes the proof of the theorem. 

III. THE FORMAL INVERSE 

The main result of this chapter is the "tree expansion" (Theorem (4.1)) of 
the polynomial Gjd\ We start with power series Ft = Xt — Hi9 where Ht 

involves only terms of degree > 2, / = 1,... ,/i. Then G, is defined by Gt(F) = 
Xi9 and we have a decomposition Gt = 2d>oG}d\ The chapter begins with a 
formula of Abhyankar [Ab2] for G, (Corollary (2.2)). 

1. Notation. Let A: be a commutative Q-algebra. For each integer n ** 0 we 
put 

n = { l , . . . , # i } , Xn=(Xu...9XH), 

a sequence of indeterminates, 

kW = k[Xl9...9Xn] and kU"" = k[[Xl9...9Xn]]9 

the power series algebra. Put 

MA°n((k))= {F=(Fl9...9Fn)\Fiek"»"9 F,(0) = 0 , i = l , . . . , n } . 

If U G k[ln]] and F G M^((À:)) we put 

<pF(U)=U(F) = U(Fl9...9Fn). 

Then <pF is the fc-algebra endomorphism of k[[n]] such that q>F(Xt) = i*) 
(i = 1, . . . ,w). If G G M4j((fc)) then <pG <> <pF = <pF(G) where F(G) = 
( F ^ G ) , . . . , / ^ ) ) . Thus MA°n((k))9 with the composition F<> G = F(G), is a 
monoid anti-isomorphic to a monoid of fc-algebra endomorphisms of k[[n]]. 
The neutral element is X (= Xn). Its group of invertible elements will be 
denoted GA°n((k)). 
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The Jacobian matrix of F E MA°n((k)) is 

3 
J(F) = 

D,FX • • • DnFx 

D' = 9 X 
.DXF„ ••• DnFj 

and its Jacobian determinant is 

j(F) = àetJ(F). 

We have J(G(F)) = J(GXF) • J(F), and so tiso j(G(F)) =j(G)(F) -j(F). 
We have a monoid homomorphism 

J0: MA°„((k)) - M„(k), J0(F) = / (F ) (0 ) , 

and GA°n((k)) consists of those F for which J0(F) is invertible. We have a split 
exact sequence 

l^GA\((k))^GAl((k))tGLH(k)^l 

where, if a = (atj) E <?£„(£), then L(a) = (Ll9...,Ln) with L, = 2ya/yJÇ 
(i = 1,... ,/*). The kernel GA\((k)) of /0 consists of those F of the form X+ H 
where 7/ involves only monomials of degree > 2 in X. 

The aim of this chapter is to study the inverse G of an element F E G/4l
w((A:)). 

2. Abhyankar's Inversion Formula, G, = lp D[P\X( j(F) • (X - F)*). 
Le tN={0 , l , 2 ,3 , . . . } . I fp = (/?1 , . . . , j P w)EN' Iput 

(where 0!= 1). For any commutative Q-algebra A and a = ( a^ . . . ,a„) E An 

we put 

ap = a{1 •- ap» and a1 '1 = a'//>'• 

(By convention a0 = 1 even if all ai — 0.) If a, 6 E 4̂W we can rewrite the 
Binomial Theorem, 

(a + b)"= 2 -faaV, 
q+r=p ** 

in the form 

(a + b)lp]= 2 flw*[rl. 

Let F E Gv4j,((A:)), so that Ft = Xt + terms of degree > 2 for i = 1,...,«. 
For each 1/ E kl[n]] put 

<f/,F>= 2 ^ ( ^ F ^ F ^ X - F ) ' ) 
pEN" 

= 2 ^(W-yW-U-F)"1)-
/>eN" 
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Recall here that, 

DlP] = %'•'•'• p!\ md (X-FY=(Xi-Fi)'".-.(Xn~Fnr. 

(2.1) THEOREM (ABHYANKAR [Ab2]). With the notation above, we have 
(U9F)=U. 

Putting H = X - F we have 

(U9 F)=2D[p](U(F) >j(F) • HP). 
p 

(2.2) COROLLARY. Let G = (G,,...,Gn) be the inverse of F: G((F) - Xt for 
i = 1,...,«. Then 

G,= 2 D™{Xrj(F)-H'). 
/)GN" 

(2.3) COROLLARY. We have 

1 = 2 DM(j(F)-H') 

so that 
l-j(F)= 2 DM(j(F) • H>). 

p¥=0 

Further we have 
X,= 2 D^{Frj(F)-H"). 

/>eN" 

(2.4) COROLLARY. For U(X) G k[[n]]put 

V(X)= 2 D[?](U(X)'j(F)'H?). 

Then 

U(X) = V(F). 

In fact, if we define V by the second formula then, by Theorem (2.1), it is 
given by the first formula. 

Corollary (2.4) expresses each element of k[[n]] as a power series in F. By 
taking the Taylor expansion of V{ X) and substituting F for X we obtain the 
following formula. 

(2.5) COROLLARY (GURJAR). For U G kl[n]] we have 

U(X)= 2 2 [D'+<{U(X).j(F).HM)]Xss0.FM. 

In fact it was Gurjar's discovery of (2.5), based on a formula of Goursat in 
the case of two variables, that led Abhyankar to the discovery of Theorem 
(2.1). 
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(2.6) REMARK. Writing (U, F)= lpD
[P\U{F) -j(F) • H') makes sense for 

an arbitrary commutative ring k, not necessarily a Q-algebra, by defining 

which is zero if qt < pt for any i. Moreover it remains true that (U, F)= U.ln 
fact let A be a polynomial ring over Z in indeterminates C, and L̂  (/? GN"; 
i = l , . . . , n ) . Put F, = A; + 2w>2C/fi,Jr> ( i = l , . . . , « ) 'and 1 7 = 2 , 1 / , * ' . 
Then F = (F„. . . ,F„) E GAl

n((A)). By embedding A in Q <S>ZA and applying 
Theorem (2.1) we conclude that (U, F)= U. The formula in general follows 
now by "specializing" this generic example. 

Theorem (2.1) will be proved as in Abhyankar [Ab2], in several steps. 
Step 1. Suppose that F = H <> G, i.e. F = H(G). If the Theorem is valid for 

G and H then it is valid for F. 
We have 

(U,F)=2D"{U(H(G)) -j(H(G)) • (X-H(G))lpi) 
P 

= ^DP{U{H{G)) -j(G) j(H)(G) • (X-G + G-H(G))lp]) 
P 

= ^D"[u(H(G))-j(H)(G)-j(G)- 2 (G-H(G)f>].(X-G)[r]) 

= 2D"(^Diu(H(G)) -j(H)(G) (G - H(G))["] j(G) -(X- G)[r])) 
q ' r ' 

= 2D"(Vq,G) [V,= U(H)J{H){X-H?<Ï\ 

= 2DqVq=(U,H)=U, 

where the last equalities invoke the assumptions on G and H9 respectively. 
Step 2. F=H^o . . . o H^ where H^ = (^...^X^Gi, Xi+l9...9Xn) 

alters only the variable Xt. 
Indeed, define Gt by the condition 

Gi(XX9...9Xi9 Fi+l9. ..,FM) = Ft. 

Since F E GA\((k)) there is a unique such Gi9 and then H(l) as above is again 
in GA\((k)). Moreover Gn = F„ and it follows by induction onn — i that 

#«>„ . . . o^(-) = ( j f 1 , . . . ,A i_ I ,F / , . . . ,F j , 

whence the claim above. 
Step 3. In view of Steps 1 and 2 it suffices to prove the Theorem for an F 

that alters only one of the variables, say Xv 

F= (Fx, Xl9...9Xn). 
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Then j(F) = DXFX, clearly. Moreover, for p G Nw, (X - F)[p] = 0 unless p 
has the form (/?„0,...,0), when (X- F)[p] = (*, - Fx)

[^\ Thus 

00 

(U,F)= 2 Df'(u(F)DlFl(Xl-Fl)
ll"]). 

Write 

u= 2 um{x2,...,x„)x, 
m=0 

with each Um G k[[X2,... ,X„}]. Then 

(U,F)= 2 Um(X2,...,Xn) 2 Df(f I ' -D 1 f I (Jf 1 -F 1 ) [" 1 ) 
m=0 Pi=0 

= 2 t/m(^2,...,^)(xr,F,>. 
m = 0 

It remains to show that (X™, Fx) = X™. Thus we have reduced the proof to 
the case of: 

Step 4. Assume that n = 1. Write X for Xx and Z) for d/dX. LetF= X- H 
with if G X2k[[X]]. We claim that, for each m > 0, 

00 

j^m= ^ D ^ ( ( A r - ^ ) m ( l -DH)Hp) 
p = 0 

where Z)[/,] = Z>V/?!. Recall Leibniz' Rule, 

D[p](RS) = 2 £ [ M ]* ' ^ [ ü lS-

2 Z ) [ / ? 1 ( ( ^ - ^ ) m ( 1 -DH)H>) 
p = 0 

oo m 

p=0 i=0 l 

oo m min(/?,m-0 

2 2 2 (-!)'( y )^ 1 *'"- ' ' D[p~J](Hp+i - Hp+iDH) 
p=0i=0 7=0 

A,=o A l"U / ! (m-/) !y!(^-;) ! (m-i-y)! 

.x«-i-J • Dp-J{Hp+i - Hp+iDH). 
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Set t = i +j and q—p—j. Then this last expression equals 

2 2 2 ( - 0 ' T 7 7 x f r ? rzXm-'D"{H"+' - H"+'DH) 

= 2 2 2 (-OM ')(7)*w~'^#*+'-#*+'0#) 
/ = 0 / = 0 q=0 ^l' 

= 2 (7)*m~'( 2 (-O'(')) ' ( 2 DW(H«+t - H«+'DH) 

Now 2}=o(-l)'({) = (1 ~ 1)' vanishes for f > 0, and is 1 for / = 0. Moreover 

= f (DWH«-D^+"H«+l) = 1. 
q=o 

This proves the claim of Step 4, and thus proves the Theorem. 

3. The terms G\d\ We fix F = X - H G GA\((k)) satisfying: 

( 1 ) H l9...,Hn are homogeneous polynomials of the same degree S (> 2) ; 

(2) J(H)is nilpotent; and 

(3) j(F)(=dctJ(F)) = l. 

To prove the Jacobian Conjecture we can assume that these conditions hold 
with ô < 3 (Corollary (2.2) of Chapter II). 

We have J(F) = I — J(H) with J(H) homogeneous in X of degree S — 1. 
Applying Lemma (4.1) of Chapter II to A = Mn(k)[X] and a = -J(H) E A8_x 

we see that (2) is actually a consequence of (3). The converse holds if k is 
reduced, e.g. a field. 

For all U G k[[n]] we have (Theorem (2.1)) 

(4) U= 2 DM(U(F)'H*). 
/KEN" 

In particular the inverse series G, defined by Gt(F) = Xi is given (Corollary 
(2.2)) by 

00 

Gt = 2 G<"> 

where 

(5) G,(rf)= 2 D^HVtf')-

(Recall that | p\ = px + • • • +ƒ>„ for ; G N".) Each Gjd) is a homogeneous 
polynomial of degree (1 + do) — d — d(S — 1)+ 1. It follows that 

(6) Gt is a polynomial iffGJd) = Ofor all d » 0. 



316 HYMAN BASS, E.H. CONNELL AND DAVID WRIGHT 

In fact, assuming that A: is a field, it follows from Corollary (1.4) of Chapter I 
that we must then have Gjd) = 0 as soon as d(S - 1) + 1 > Sn~\ Thus, ifk is 
afield, 

(7) Gt is a polynomial iff G\d) = Qford> (Sn~l - 1) / (S - 1). 

These remarks motivate the following detailed study of the expressions Gjd\ 
(3.1) Notation. For every L e k[[n]] and d>Qwe put 

L[d] = d\ 2 DM(L-H'). 
\p\=d 

For example: 
(0) L[0] = L, 

P=\ p=\ p=\ 

= 2 ( £ , £ ) « , + L • Tr( ./(#)) = 2 (D,L) • Hp, 
P=\ p=\ 

in view of conditions (1) and (3). 
(2) \[d] = Q ioxdX), 

since 1 = Y.pD
l'\H>) (Corollary (2.3)). 

(3) G\d) = T\X'W ( f o r m u l a ( 5 ) ) -

In particular 

Gf» = X, (by(0)) 

and 
G^ = H, (by(l)) . 

(3.2) LEMMA. For L e fc11"11 andd>0 we have 

Lld]= 2 Dr{LHr). 
r: d-»n 

Here, and in what follows, if r: d -» n and r, = r(/), we put Dr = Dri • • • Z) 
and Hr = H. • • • i / r . 

PROOF. TO each r: d -> n we associate/>(r) = (/^(r),...,/?„(r)) wherepf(r) 
= Card(r_1(0). Note then that |/?(r)|= </, £r = D^r\ and #,. = i/*(r>. If 
p G N " and |/? |= dput Np = Card{r: d -» n |/?(r) = /?}. Then 

2 Dr(LHr)= 2 NpDP{LHP) 
r: d-*n l /H = ^ 

It suffices therefore to show that Np • p\= d\. 
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The symmetric group Sd acts on {r: d -• n} with orbits the fibers of the map 
rv-*p(r). Let Tp C Sd denote the stabilizer of some r such that p(r) = p. It is 
easy to see that Tp is isomorphic to Spi X • • • XSPm. Thus Np = [Sd:Tp] = 
d I/pi, as required. 

(3.3) LEMMA. For L G k[[n]] and d > 0, 

LW=i(de) 2 (DfL) • (Hf\é_.v 
e—\ /:e->n 

If S C d put 5' = d - S and, for r. d -» n, Z>rs = II, e s A.. Then, from (3.2), 

Lw= 2 AU-",) 
r: d-»n 

= 2 2 (z> )̂(̂ ) 
r: d -n SCd 

= 2 ( 2 2 (D/L^^Jf , ) ) 

= î(i) 2 ( W 2 *.(*,*.)) 
e=0 /:e->n v g: d—e~*n ' 

= i(i) 2 (*,*)• (*,w 
e=0 ƒ: e-»n 

For e = 0we have Hf=\, and l[rf] = 0 for d > 0 ((3.1), Example (2)); whence 
the lemma. 

(3.4) LEMMA. For L G k[[n]] andd>0 we have 

L [ d ] = l l ( i ) 2 LeJ 

w/iere \e\= ex + • • • + eA, 

J! </! 
(?) e\ ex\-*eh\' 

and where 

LeJ=(DfL)(DfHf)...{DfHhjHf, 

We argue by induction on d. For d= 1 it is (3.1), Example (1), L t l ] = 
^n

j=l(DjL)Hf. Suppose, 
Example (1), L m = Tf=x(DfL) • #ƒ. Suppose that </ > 2. By Lemma (3.3), 

L M ~~ 
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By induction 

A=»2 e=(e2,...,e„) \e2>-••>*>, I f=Œ ƒ„) 
e2+ ••• +eh=d-e, £: e,->n 

Now 

d\-(d-ex)\ _ d\ id\[ d~ex \ d\-(d-
\^)\e2,...,eh) ex\(d-e,)\- J---e„\ ex\---eh\ 

and 

(D*L) • (HfX./= (D/,L)(DM • • • ( 0 / A - X ; 

whence the lemma. 

(3.5) PROPOSITION. We have Gf0) = Xi9 Gjl) = Hi9 and, for d>2, 

d\G}«= Î 2 [x
 d ) 1 {Ht)eJ 

h = 2 e=(elt...,ek) ^ >*2 ' ' ' * '** / / = ( / 2 , . . . ,ƒ,) 
\+e2+ ••• +eh=d f/:ej^n 

where 

d\ 
( d \ = l,e2,...9eh) e2\'-eh\ 

and 

{H,).j= (DAH,)(DflHf2) • • • (DfHfhjHÂ. 

The first formulas follow from (3.1) Example (3). The last formula follows 
from (3.4) with L = Xt. Then DfXt = 0 unless ex = 1 and ƒ, = i. 

4. The tree expansion Gjd) = 2T(\/a(T))2fPTj. To pursue the expansion 
of Proposition (3.5) we must develop expressions of the form DfHg where ƒ: 
e -* n and g: e' -* n. We have 

(1) DfHg= 2 ( ^ . . - . o , ^ , , ) • • • ( / > ƒ . . - V ) ^ 0 ) 
M: e-»e' 

where, for S C e, /)ƒ 5 = UiGSDf(iy Applying (1) to the expressions DfHf x in 
(3.5) we obtain 

(2) (Hi)eJ=2(Hi)eJ,u 
u 

where u varies over (h — l)-tuples u = (u2,...,tjA) with t^: e, -> e,_! (y = 
2, . . . ,A; ex = 1 by convention), and where 

(3) (#,), ,ƒ,„= (/>,//,) \{Dh<urmHm)) -.. {Dh>uV(ei)Hhiei))\ 

• " ' \{Dh,«VmHh-im) ' ' ' (Z)A,«»-,(«t-i)
f(ir»-,(«*-i))J ' #/»• 
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Now (3.5) takes the form 

(4) d\o^= i 222(Ï)(^W.. 
h=2 e f u 

where the indices vary as follows: 

e = (e29...,eh), 1 + e2 + • • • +eh = d, 

f=(fi, •••>//,)> J&:e,->n, 

u = (w 2 , . . . ,w j , i i / e , . - * ^ , (e, = 1), 

and 

« ) 
d\ 

e2\---eh\ 

Note that the indices u depend on e, but not on/, so that we can reverse the u~ 
and/-summations in (4). 

Now we come to the main observation of this section. A pair (e, u) as above, 
i.e. the (finite) inverse system 

(5) e*-*«*-i -̂  "•• •^e2->e1 = {1}, 

can be identified with a rooted tree T = T(eu) with d vertices: the set V(T) of 
vertices of T is the disjoint union of the ey's, the one from ex being the "root": 
two vertices are joined when they correspond via one of the w/s. More 
precisely we can label the vertices 

Vjtr ( / = l , . . . ,A;r = l , . . . ,ey) 

with vx x being the root. The edges consist of all couples 

{vj,r>Vj-\,uAr)} (j = 2,...,h;r= 1,...,*,). 

Thus V(T) is the disjoint union of the sets 

VJ(T)={VJA,...,VJJ. 

The latter vertices are said to be of height j \ they are the vertices at distance (in 
T) j — 1 from the root. Thus the rooted tree T intrinsically determines 
ej = Card Vj(T), h = the largest/ such that e} > 0, e = (e2,.. -9eh), and d = 
CardF(J) = ex + h^A. It further determines the functions u/. Vj(T) -* 
Vj_x(T) by the condition that {v9 Uj(v)} is required to be an edge for all 
v G Vj(T). The only element of structure in (e, u) not determined by T is the 
indexing of Vj(T) by 1,... ,ey. 

Now let ƒ = (/2,... ,fh) where fy. e, -» n for / = 2, . . . ,h. We can identify ƒ 
with an i-rooted labeling of T, i.e. with a function 

ƒ: V(T) -> n 

such that /(root) = /. Specifically, we define f(vJr) = fj(r) for / = 2,...,/z; 
r— 1,... ,e7; and /(t^ ,) = i. Making this identification, we shall also write fv 

îorf(v)(vŒV(T)). ' 
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UvG Vj_x(T) put 

(6) V+ = Ujl(v) 

= {WEVJ(T)\uj(w) = v} 

= [w E V(T) | {w, v] is an edge and height(w) = 1 + height(t>)} 

and 

c o D/„+= n D/W. 
yv€t)+ 

Given an /-rooted labeling ƒ of T we put 

w PTJ= n (v , . ) . 
t?GK(r) 

EXAMPLE, ^ = 1, e2 = 3, e3 = 6, and d — 1 + 3 + 6 = 10. 

P r t / = {DxD5D,Ht) • (D2Hx)(D3DiH5) • (Z>3D6JJ3) • H^HJH,. 

A review of our definitions and formula (3) shows that, for e = (e 2 , . . . ,eA), 
/ = ( fi>- • • >//,)> w = («2»- • • >"*)> a n d r = r(e,«) a s above> w e h a v e 

(9) {Ht)eJiU = PTJ. 

Thus we can rewrite (4) as 

(io) rf!G/->= f 2 2 2 ( J K ^ . 
A=2 e M / 

We wish to write this summation over pairs T, ƒ where T is a rooted tree (up to 
isomorphism) with d vertices and ƒ is an /-rooted labeling of T(i.e. ƒ: V(T) -» n 
and/(root) = /). To do this we must, if T = T(eu), insert a coefficient CT equal 
to the number of pairs (e\ w') for which T^u^ and T(e M) are isomorphic as 
rooted trees. As already remarked above we must have e' = e. Further if a: 
T(e,u') ~* T(e,u) is a rooted tree isomorphism it must induce bijections Vj(T(euf)) 
-» Vj(T(eu)) for each y. The indexings then translate these bijections into 
permutations a- of ey such that the following diagram commutes. 
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uh u3 u2 

«A "* eh-\ "* • * • "* e2 "> e l 

Of, I ah-\i °2^ °\ i 

eA - eA_1 -> ••• -* e2 -* e! 
Wh «3 "2 

We can identify a with the element 

where, for any m, 5m denotes the group of permutations of m. The group S acts 
on the set of u as above by 

The present discussion can be summarized by saying that T^e.^ is isomorphic 
to T(e M) as a rooted tree iff e' — e and u' belongs to the S-orbit of u. Thus the 
coefficient CT we are seeking is the index [S : A] of the stabilizer A in S of u. 
Evidently y* is just the group 

A = Aut(r) 
of rooted tree automorphisms of T. Put 

a ( r ) = CardAut(r). 

Then [S:A] = e\/a(T) where e\ = e2\ • • -eh\ = Card S. 
With this information we can rewrite (10) as 

do "<** = ? 2(i) ;£)*•' 
where T varies over rooted trees (up to isomorphism) with d vertices, and ƒ 
varies over /-rooted labelings of T. Since (d

e) — d\/e\ we can rewrite (11), after 
cancellations, as follows: 

<12> o*-!^'*,. 
This is the formula we sought. We recapitulate the result in the following 
theorem. 

(4.1) THEOREM. Let k be a commutative Q-algebra. Let H{9...,Hn E k[n] be 
homogeneous polynomials of degree S>2 such that F = ( Xx — Hl9..., Xn — Hn) 
satisfies 

j(F) (=dct/(F)) = l. 

Define Gt G *""" by G,(F) = X,. Then G, = ld>0GJd\ where Gj0) = X„ Gjl) 

= Ht, and for d>2, 

<12> ^-S^jï'w. 
Here T varies over isomorphism classes of rooted trees with d vertices, a(T) — 
CardAut(r),/varies over i-rooted labelings ofT(f: V(T) -> n and f (root) = /), 
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and 

(«) pTj= n {DfjifX 
vŒV(T) 

with v+ and D^ given respectively by (6) and (7) above. Gjd) is a homogeneous 
polynomial of degree d(8 — 1) + 1, and Gt is a polynomial iff Gjd) = 0 for all 
d»0. 

5. Calculations. To compute further using Theorem (4.1) we introduce its 
generic case (with 8 — 3). Explicitly, for each d> 0 let ty\Ld denote the set of 
monomials of degree d in X = (Xl9... 9Xn). Let (CitM) be a family of inde-
terminates indexed by i = 1,...,« and M E <DIt3, and put k = Q[(C/tA/)]. For 
each / = 1,...,« put Hi — 2 ^ ^ ^ CUM • M9 a cubic homogeneous polynomial 
in k[X]. Let F = (F„. . . ,F„) where JFJ = Xi - Hi and 

y(F) = det ( / (F)) = det( ƒ - J(H)). 

We can write 

. / (F)-1 = 2 2 **'#> 
</= l Are91t2rf 

where, for N E <DH2rf>
 a/v *s a polynomial in (C/>A/) homogeneous of degree d9 

and linear homogeneous in each of the sets of variables (CitAf)MGeji for 
i — 1,...,«. Thus the ideal % of k generated by all of the coefficients aN 

(N E 91t2</> d— 1,...,«) is (multi-) graded by degrees in each of the sets of 
variables ( C , . ^ ^ . 

We put k - k/% and denote the classes of Hi9 Fi9 F modulo 2t by Hi9 Fi9 F, 
respectively. Then F = (F l 5 . . . ,FW), Ft; = Â  — Hi with each ƒ/) cubic homoge­
neous in X9 andy(F) = 1. Moreover F is generic (in an evident sense) subject 
to these conditions (over Q-algebras). Since J(F) = I — J(H) is invertible 
over k[X] and J(H) is homogeneous of degree 2 (> 0) in X it follows (Lemma 
(4.1) of Chapter II) that J(H) is nilpotent. 

To apply Theorem (4.1) we introduce the set Td of (isomorphism classes of) 
rooted trees with d vertices, listed below for d<6. 

Td 

d=l: 

d = 2: I 
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rf=5: V I Knvw V Y 

V I 

d = 6: < 

KV 

VV M yVv^W^ 
For 71 e X, and 1 < / < 

(1) 

« we put 

where, as in Theorem (4.1), ƒ varies over all /-rooted labelings ƒ: V(T) -+ 
{1, . . . ,«}, and where P n / = UvGV{T)(Dfv Hf). 

We equip k[X] with the derivations ^ = d/dXt (i = 1,...,«), and call an 
ideal Q of k[X] SL differential ideal if DtQ C g for all i. For each <? > 1 let 

[J(H)e] = the differential ideal of k[X] generated by the 
entries of J(H)e. 

It is generated as an ideal by all elements Dpf where Dp — DPx • • • DPn is any 
monomial in Dl9... ,Dn and ƒ is any entry of J(H)e. Clearly [J(H)e] contains 
[J(Hy']ioTe">e. 

Given T e T, we shall write 

(2) a(r) e [/(#)<] 
if a#.(r) E [/(/f)*] for all i = 1,...,«. (Conceivably this follows once it holds 
for a single /, because of symmetry properties among our generic H 's.) 

(5.1) Conjecture. Given e > 1, there is an integer d(e) such that for all 
d ^ d(e) and all TeTdwe have o(T) G [J(H)e]. 

(5.2) REMARK. Conjecture (5.1) implies the Jacobian Conjecture. 
Indeed, say we want to prove the Jacobian Conjecture over C. By Corollary 

(2.2) of Chapter II it suffices to do so for maps Fc: C" -> Cn of the form 
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Fc = X — Hc with Hc cubic homogeneous and J(HC) nilpotent. It follows 
then that j(Fc) = 1, so that there is a homomorphism k -> C such that 
Fc — C^kF, where k and F are as above. Thus it suffices to show that F 
above is invertible. We saw above that J(H) is nilpotent; say J(H)e = 0 with 
e > 0. Then it follows from Conjecture (5.1) and the following formula ((12) of 
Theorem (4.1)), 

(3) <?<">= 2 zfn-^n 

that Gjd) — 0 for d> d(e). This shows that Gt is a polynomial, so F is 
invertible, as claimed. 

Of course formula (3) shows that Conjecture (5.1) is stronger than necessary 
for the Jacobian Conjecture. 

Conjecture (5.1) is trivial for e — 1, taking d{\) — 1. We shall present some 
partial results below which, in particular, imply the conjecture for e — 2, with 
d(2) = 2 (Proposition (5.3)). 

Let Wd = Z(T</), the free abelian group with basis T ,̂ and extend ot to a 
homomorphism 

oi:Wd->k[X]. 

We extend the convention (2) to all elements t E Wd by writing a(t) G [J(H)e] 
if a,(0 G [J(H)e] for/ = 1,...,«. 

/.x /ƒ Tcontains a vertex v with Card(i>+ ) > 4 then PTf = 0/or 
^ ' every labeling f of T, and hence ot(T) = 0. 

In fact PTj contains the factor Df Hfv which, being a cubic polynomial 
differentiated four or more times, is zero. 

In view of (4) we may restrict attention to the set T'd of trees T ETd such 
that Card(ü+ ) < 3 f or all v E V(T). As d becomes large the trees in Td must 
become increasingly tall. The tallest one is the straight line, 

(5) Ld= - [ dvertices, 

< t 
(6) «,(/,„) = ! 2 xa-{j(H)\ae[j(H)<\. 

3 - i 

Here we write (J(H)d)ia for the (/, a)-entry of J(H)d. Label the vertices of 
Ld by 1,... ,d9 starting with 1 at the root. An /-rooted labeling ƒ of Ld is a 
sequence (ƒ,, . . . ,/^) of integers from 1 to n with fx = /, and 
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The (a, b) entry of J(H) is Jab = DbHa, so we can write 
PLdj

 = Jfx,f2 ' ' '
 Jfd-ufd ' Hfd 

1 n 

~ T 2 Jfx,f2 ' " Jfd_xJd
Jfd,a

Xa> 

where we have used Euler's formula for the cubic homogeneous polynomial 
Hu Finally 

oi(Ld) = 2PLd,f=ll(Jd),a-Xa9 

f 

whence (6). 
To obtain further relations from (6) we introduce the following "tree 

surgery." Suppose that we are given (T, v) and 5, where T G Td, v G V(T), 
and S G Td,. We write 

Tl 0S 
for the tree in Td+d, obtained by joining the root of S by a new edge to the 
vertex v of T, and rooting the resulting tree at the root of T. 

EXAMPLE. 

¥ 
If U is a third tree and w G V(U) then we have the associative law 

(7) U".—.(7^ ,S) = (ir, ,T)V
C . 5 . 

(8) < x , ( 7 ^ S ) = 2 oa(S) • ahvjT) 

where oiva(T) is defined in the proof below. 
An /-rooted labeling ƒ of 

n oS 

consists of an /-rooted labeling fT of Tplus, for some a = 1,...,«, an a-rooted 
labeling fs of S. It is then clear that 

where 

P-To—oSJ — Psjs ' PTJT,v,a^ 

PT,fT,v,a = (DaDf„HfJ- n (Dfw+HfJ, 
wŒV(T) 
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and v+ is understood in the tree T, not in 

r0 ,s. 
Now summing over all ƒ as above we obtain (8) where aiv a(T) = 2gPTfgiVja9 

with g ranging over all /-rooted labelings of T. 
As a consequence of (8) we have: 

Suppose s = 2rzrSr G Wd. (all zr G Z) and a(s) G [J(H)e]. 
(9) Then for any (T, v) as above, putting n—os = 2 zr(T.—9Sr) 

G JVd+d,9 we have o(TZ—+s) G [J(H)e]. 

Ifv denotes the top vertex of Ld then 

(10) o^a{Ld) = (j(H)\a, 

so, by (7), 

a=\ 

With notation as in the proof of (6), let ƒ = (ƒ,,.. . ,ƒ,) be an /-rooted 
labeling of Ld. Then/j = / and 

PLdJ^a = (DaHfd)(DfdHfdJ • • • (DfHfx) 

= Jfi,f2'"Jfd-i.fd'
Jfd>*' 

Summing over ƒ we obtain (J(H)d)ia9 whence (10). 
Given T G Td and S G Td,, we define 

(11) SS(T)= 2 T>+-^S. 
vSV(T) 

This belongs to the free abelian group Wd+d> with basis Td+d,9 and we extend it 
to a homomorphism 

8:Wd,®Wd-*Wd+d„ 

8(S®T) = ÔS(T). 

For any s G Wd. and t Œ Wdwc shall write 8s(t) for S(s <8> f). 

(12) *i(8s(T))= loW-DMT)). 
a=\ 

In view of (8) it suffices to show that 

1 »,.e..(r) = Da(a,(T)). 
vEV(T) 

This, in turn, results from the fact that for any /-rooted labeling ƒ of T, 

Da{PTJ)= 2 PT.f,v,a> 

vev(T) 

which is clear from the definitions. (See the proof of (8).) 
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As a consequence of (12) we have 

( . Let sE Wd, and t G Wd. If a(t) G [J(H)e] then a(ôs(t)) G 
*13' [J(H)e]. 

Let v denote the top vertex of 

r 
} 
4 root 

Then if R is a tree and w 

We can thus define 

We then have 

(14) * , (« , (£ , ) •—.S) 

= 2 oa(S) • I 2 «,(*) • Db{(j{H)d)j) S [ƒ(#)"]• 
Û = 1 \ Z > = 1 / 

Indeed it follows as in the proof of (12) that if v G V(T) then 

b=\ 

Taking T — Ld with v its top vertex and applying (10) we obtain 

•, ,„. .(**(£,))= 2ob(R)-Db{(j(H)d)ta). 
b=\ 

Now (14) follows from this and formula (8). 
Let T G Td and let r denote its root. Let w be any vertex of T. Consider all 

vertices v of T such that any path in T from v to r passes through w, i.e. all 
vertices "above" w. These form the vertices of a subtree 71(H>) of T. Clearly 
T(r)= T. If w 7̂  r then 

T= T'{w)v.—«r(w), 
where T'(w) is the subtree spanned by the remaining vertices, and v is the 
vertex nearest w enroute from w to r. 

If w T* r we call T( w) a full branch of T. Such T(w) are precisely the subtrees 
S of T for which T is of the form T = T£ ÖS. From the associative law (7) 
we see that a full branch of S is also one of T. 

G V(Ld) we can still identify v with a vertex of 

L/+—R. 

•5= 2 (L/~R)vo—S. 
w<EV(Ld) 
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If TŒTd with d>2 then T has a full branch S G Td, with 
d' >(d - l ) /3 . 

Recall that T'd C Td consists of trees such that Card(t>+ ) < 3 for all vertices 
t>, a condition obviously inherited by subtrees. Let r be the root of T and / 
(< 3) the number of vertices vt(i — 1,... ,f) in r+ . Let dt be the number of 
vertices in T(vt)\ we may assume that dx is the largest. Then 

t 

d=l+ 2 dx < 1 + 3dx 

so d{> (d — l ) /3 , and T(vx) — S is the required full branch. 

Given e > 1, suppose that for some d0 > 1 we have a(T) G 
[J(H)e] whenever T GTd and d0< d < 3d0 - 2. 77*É?« a(7) 
G [ / (# ) ' ] for all TETd and all d > d0, i.e. Conjecture (5.1) 
is true with d(e) — d0. 

We argue by induction on d > d0. In view of the hypothesis we may assume 
d > 3d0 - 1 and, in view of (4), assume that T G Td. Then, by (15), T has a 
full branch S G Td, with d'> (d - l ) /3 >d0- 2 /3 , whence d' ^ rf0. By 
assumption at(S) G [ / (# ) ' ] . It follows therefore from (8) (or (9)) that at(T) G 
[J(HY]. 

(5.3) PROPOSITION. Conjecture (5.1) is valid for e = 1, w/7/i d(l) = 1, and for 
e = 2, wi/A </(2) = 2. 

We treat only the case e— 2. The case e = 1 is trivial, or can be proved 
similarly. 

Set d0 = 2, so that 3d0 - 2 = 4. It suffices, by (16), to show that a(T) G 
[J(H)2] for all T G Td with 2 < d < 4. The trees to be considered are 

Ld (d = 2 , 3 , 4 ) , 

V - V . V - Y . T - K and W = \ J / 
By (6) we have a(Ld) G [J(H)2] for all Ö? ^ 2. Moreover 

— T root r 
— JUj o o J-̂ 2 

so also a(7) G [ / (#) 2 ] , by (8) (or (9)). 
We have V = ôLi(L2) - L3, and o(Ss(L2)) G [J(H)2] for any 5, by (12) (or 

(13)). Hence a(V) G [/(if)2]. Since 

Y=Ll9-^>V 

it follows again from (8) (or (9)) that a(Y) G [J(H)2]. Finally, SLj(F) = 2T + 
W, and a(«5(F)) G [/(i/)2] for any S, by (12). Hence a(PT) G [!/(//)2]. 
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(5.4) COROLLARY, /ƒ, in the setting of Theorem (4.1), we have J(H)2 = 0, then 
F — X — H is invertible with inverse G = X+ H. 

This corollary covers some of the same cases as Theorem (6.2) of Chapter II. 
For e — 3 we have tried, using the above kinds of relations (i.e. (4)-(16)) to 

show that, 

(*) o(T) <=[j(H)3] for all T E Td, 

for sufficiently large d. For d < 7 the calculations, though tedious, can be done 
by hand, and (*) does not follow (from the above relations). Dan Grayson has 
tested the case d = 8 on a computer and (*) still fails. 
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